Synthesis and Properties of 8H-3-Oxaheptalen-8-one

Tomoo NAKAZAWA, * Mariko ISHIHARA (nee, ASHIZAWA), Mamoru JINGUJI,
Masakazu YAMAGUCHI, † Hideki YAMOCHI, †,†† and Ichiro MURATA †

Department of Chemistry, Medical University of Yamanashi,
Nakakoma, Tamaho, Yamanashi 409-38

†Department of Chemistry, Faculty of Science, Osaka University,
Toyonaka, Osaka 560

An ethanol solution of $12-\text{oxatricyclo}[7.2.1.0^2,^8]$ dodeca-2(8),3,6,10-tetraen-5-one was irradiated with a 100-W Hg lamp through pyrex filter to give 8H-3-oxaheptalen-8-one, an oxepine condensed with tropone, in good yield together with a slight amount of 6-hydroxyazulene.

Oxepine is a well-documented seven-membered heterocycle and its properties have extensively been studied.¹⁾ Although annelated oxepines with aromatic rings are also known, no oxepines condensed with nonbenzenoid aromatic species have so far been reported. We are interested in a novel ring system, 8H-3-oxaheptalen-8-one (1), in which oxepine is fused with tropone.

During the course of our study on 4,5-dehydrotropone as a building block for the synthesis of tropylium systems incorporated into three-dimensional frameworks, 2) we have prepared 12-oxatricyclo[7.2.1.0^{2,8}]dodeca-2(8),3,6,10-tetraen-5-one (2) and its bridgehead alkyl derivatives (3). 3) The efficient photochemical conversion of 7-oxanorbornadienes into the corresponding 6-hydroxyfulvenes, 7-oxaquadricyclanes, and oxepines 4) prompted us to study the photochemical behaviors of 2 and 3. We have already reported that the irradiation of 3 in methanol gave 1-alkyl and 3-acyl-1-alkyl-6-hydroxyazulenes in good combined yields. 5) Contrary to these observations, the unsubstituted compound 2 behaved quite differently on irradiation leading to the expected oxepine.

$$0 = \begin{cases} R^{1} & 2, R^{1} = R^{2} = H \\ 3, R^{1} = H, R^{2} = alkyl \\ R^{1} = R^{2} = alkyl \end{cases}$$

Monitoring of the photolysis of 2 (1.2 x 10^{-4} mol/L in ethanol, 500-W Hg lamp, 310 < λ < 390 nm irradiation⁶⁾) reveals that the clean conversion of 2 into photoproducts was completed within 1 min. However, the spectrum of the product mixture

^{††} Present address: Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo 106.

1648 Chemistry Letters, 1988

is quite different from that of azulene type obtained on irradiation of 3 in a methanol. 5) In a typical preparative experiment, an ethanol solution of 2 (1- $2 \times 10^{-3} \text{ mol/L}$) was irradiated with a 100-W Hg lamp through pyrex for 0.5-1 h. Careful workup of the reaction mixture under nitrogen gave 8H-3-oxaheptalen-8one $(1)^{7,8}$ in 87 - 93% yield together with a tiny amount (1 - 2%) of 6-hydroxyazulene (4).9) The 13 C NMR [(CDCl₃) δ 119.7 (C-1,5), 139.2, 139.9 (C-6,10,7, 9), 142.0 (C-5a, 10a), 149.3 (C-2,4), 186.4 (C-8)] as well as the 1 H NMR spectrum⁸⁾ of **1** confirms its symmetrical structure. The vicinal proton coupling constants, $J_{1,2} = J_{4,5} = 6.0 \text{ Hz}$ (in $CDCl_3$) and $J_{6,7} = J_{9,10} = 12.0 \text{ Hz}$ (in CD₃CN) are comparable to the corresponding coupling constants of 1-benzoxepine $(5.5 \text{ Hz})^{10}$ and tropone (12)Hz), 2b, 11) respectively, revealing that the oxepine ring maintained its boat $conformation^{12}$) whereas the tropone moiety remains almost planar geometry 13) in 1.

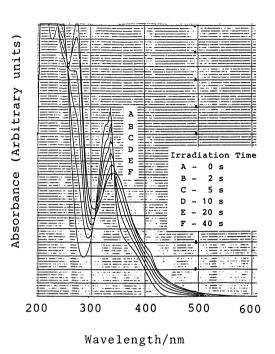


Fig. 1. UV/VIS spectral change of **2** upon irradiation with a 500-W Hg lamp.

$$0 = \underbrace{\begin{array}{c} h\nu \\ C_2H_5OH \end{array}} = 0 = \underbrace{\begin{array}{c} 9 & 10 & 1 & 2 \\ \hline C_2H_5OH \end{array}} + HO = \underbrace{\begin{array}{c} HO & 1 & 2 \\ \hline C_2H_5OH \end{array}} + HO = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} = \underbrace{\begin{array}{c} 1 & 1 & 2 \\ \hline C_2H_5OH \end{array}} =$$

The electronic spectrum of 1 was strongly dependent on the solvent polarity [λ_{max} nm (log ϵ) of the longest wavelength absorption which has been shown to be the transition polarized along the long axis of 1^{14}): in hexane, 324 (3.72); in benzene, 335 (3.76); in methanol, 347 (3.85); in 15% aqueous methanol, 355 (3.90)]. As would be expected, 1 was protonated in CF₃COOH to give 8-hydroxy-3H-3-oxaheptalenium ion (5) [1 H NMR (CF₃COOH) & 5.27 (d, J = 8 Hz, H-2,4), 5.88 (d, J = 8 Hz, H-1,5), 7.56 (d, J = 12 Hz, H-6,10 or H-7,9), 7.66 (d, J = 12 Hz), H-7,9 or H-6,10)]. Downfield chemical shift (Δ 8 = 0.67 - 0.80 ppm) of the troponoid protons in the 1 H NMR spectrum of 5 compared with those of 1 are moderately smaller than the corresponding values (1.29 - 1.47 ppm) observed for 9 and its protonated species 10. 15) These data could be interpreted in terms of the intramolecular electron transfer from the oxepine ring to the tropylium ring in 5, that is, by a contribution of 3-oxoniaheptalen-8-ol forms 5a and 5b to some extent and/or by the

paratropic character associated with 12π electron framework of 5a and 5b. Consequently, the protonated species 5 should have a more planar conformation than 1. On standing at room temperature for 4 h in CF₃COOH, 1 was quantitatively isomerized to 7H-2-hydroxybenzocyclohepten-7-one (8). This rearrangement would proceed via a benzene oxide intermediate 6.

The 1 H NMR spectrum of 1 (CS₂/CDCl₃) showed no sign of line broadening due to valence tautomerism even at -100 °C. However, the reaction of 1 with 4-phenyl-1,2,4-triazoline-3,5-dione in dioxane at room temperature gave readily a product 13^{17}) in 77% yield which corresponds to the cycloadduct of a valence tautomer 12 of the starting material.

As the precedented photochemical conversion of 7-oxanorbornadienes into oxepines, 4b) a possible intermediate for the present photolysis, 2 o 1, should be 11, isolation of which has not met with success. It should be noted that the course of the main photochemical reaction of 2 in ethanol is quite different from that of 3 in methanol. Studies aimed at clarifying the marked solvent and substituent effects are now in progress.

References

- 1) For reviews, see: E. Vogel and H. Günther, Angew. Chem., 79, 429 (1967); Angew. Chem., Int. Ed. Engl., 6, 385 (1967); L. A. Paquette, "Nonbenzenoid Aromatics," ed by J. P. Snyder, Academic Press, New York, N. Y. (1969), Vol. 1, p. 249.
- 2) a) T. Nakazawa and I. Murata, Angew. Chem., 87, 742 (1975); Angew. Chem., Int. Ed. Engl., 14, 711 (1975); H. Yamochi, K. Nakasuji, T. Nakazawa, and I. Murata, Chem. Lett., 1982, 459, references cited therein; b) T. Nakazawa, Y. Niimoto, and I. Murata, Tetrahedron Lett., 1978, 569.
- 3) T. Nakazawa, F. Nishikawa, M. Ashizawa, M. Jinguji, H. Yamochi, and I. Murata, Chem. Lett., <u>1985</u>, 1281.
- 4) a) H. Prinzbach, M. Argüelles, and E. Druckrey, Angew. Chem., 78, 1057 (1966); Angew. Chem., Int. Ed. Engl., 5, 1039 (1966); P. Deslongchamps and J. Kallos, Can. J. Chem., 45, 2235 (1967); H. Prinzbach, P. Wursch, P. Vogel, W. Tochtermann, and C. Franke, Helv. Chim. Acta, 51, 911 (1968); W. Eberbach, M. P.-A. H. Achenbach, E. Druckrey, and H. Prinzbach, Helv. Chim. Acta, 54, 2579 (1971);

1650 Chemistry Letters, 1988

D. Stusche and H. Prinzbach, Chem. Ber., 106, 3817 (1973); b) G. R. Ziegler and G. S. Hammond, J. Am. Chem. Soc., 90, 513 (1968); H. Prinzbach and P. Vogel, Helv. Chim. Acta, 52, 396 (1969); G. R. Ziegler, J. Am. Chem. Soc., 91, 446 (1969); R. K. Bansal, A. W. McCulloch, P. W. Rasmussen, and A. G. McInnes, Can. J. Chem., 53, 138 (1975); R. A. S. Matheson, A. W. McCulloch, A. G. McInnes, and D. G. Smith, Can. J. Chem., 55, 1422 (1977); W. Tochtermann and P. Rösner, Chem. Ber., 114, 3725 (1981).

- 5) T. Nakazawa, M. Ashizawa, M. Jinguji, M. Yamaguchi, and I. Murata, Chem. Lett., 1986, 2045.
- 6) Toshiba UV-D33S and UV-31 filters were used.
- 7) All the compounds isolated gave correct elemental analyses and/or correct high resolution mass spectral data.
- 8) 1: Orange plates; mp 91-92 °C; UV (hexane) λ_{max} nm (log ϵ) 257sh (4.29), 264 (4.30), 324 (3.72), 335sh (3.69), 380sh (3.39); UV (CH₃OH) 274 (4.31), 347 (3.85); ¹H NMR (CDCl₃) δ 5.57 (d, J = 6 Hz, H-1,5), 6.08 (d, J = 6 Hz, H-2,4), 6.80 (bs, H-6,10,7,9); ¹H NMR (C₆D₆) δ 4.75 (d, J=6.1 Hz, H-1,5), 5.46 (d, J=6.1 Hz, H-2,4), 5.84, 6.60 (each d, J=12 Hz, H-6,7,9,10); ¹H NMR (CD₃CN) δ 5.74 (d, J=6.1 Hz, H-1,5), 6.13 (d, J=6.1 Hz, H-2,4), 6.75, 6.90 (each d, J=12 Hz, H-6,10,9,7); ¹H NMR (CH₃OD) δ 5.73 (d, J=6.2 Hz, H-1,5), 6.15 (d, J=6.2 Hz, H-2,4), 6.87, 7.05 (each d, J=12.5 Hz, H-6,10,7,9).
- 9) K. Takase, T. Asao, Y. Takagi, and T. Nozoe, J. Chem. Soc., Chem. Commun., 1968, 368.
- 10) H. Günther, R. Schubart, and E. Vogel, Z. Naturforsch., B22, 25 (1967).
- 11) D. J. Bertelli, T. G. Andrews, Jr., and P. O. Crews, J. Am. Chem. Soc., <u>91</u>, 5286 (1969).
- 12) D. M. Hayes, S. D. Nelson, W. A. Garland, and P. A. Kollman, J. Am. Chem. Soc., 102, 1255 (1980); A. Rieker, S. Bergar, D. Mootz, M. Steffen, and H. Wunderlich, Chem. Ber., 115, 385 (1982); J. M. Schulman, R. L. Disch, and M. L. Sabio, J. Am. Chem. Soc., 106, 7697 (1984).
- 13) E. J. Forbes, M. J. Gregory, T. A. Hamor, and D. J. Watkin, J. Chem. Soc., Chem. Commun., <u>1966</u>, 114; D. J. Watkin and T. A. Hamor, J. Chem. Soc., B, <u>1971</u>, 2167; J. P. Schaefer and L. L. Reed, J. Am. Chem. Soc., <u>93</u>, 3902 (1971).
- 14) M. Higashi, H. Yamaguchi, T. Nakazawa, and I. Murata, Spectrochim. Acta, Part A, (1988) in press.
- 15) T. Nakazawa, Y. Niimoto, and I. Murata, unpublished results.
- 16) 8: Colorless needles; mp 238-240 °C (dec.); 1 H NMR (DMSO-d₆) & 6.38-6.67 (m, H-6, 8), 7.08 (dd, J=8, 2 Hz, H-3), 7.18 (d, J=2 Hz, H-1), 7.48 (d, J=13 Hz, H-5 or 9), 7.51 (d, J=13 Hz, H-9 or 5), 7.69 (d, J=8 Hz, H-4), 10.46 (bs, OH); 13 C NMR (DMSO-d₆) & 118.9, 118.9, 127.9, 130.6, 134.7, 136.5, 137.5, 140.8, 141.4, 159.5, 187.1; UV (CH₃OH) λ_{max} nm (log ϵ) 239 (4.49), 278 (4.56), 313 (3.89), 330 (3.94); UV (1M NaOH) 252 (4.38), 296 (4.44), 387 (4.06).
- 17) 13: Colorless prisms; mp 242-245 ℃ (dec.).